12,059 research outputs found

    An analysis of expertise in intelligence analysis to support the design of human-centered artificial intelligence

    Get PDF
    Intelligence analysis involves unpredictable processes and decision making about complex domains where analysts rely upon expertise. Artificial Intelligence (AI) systems could support analysts as they perform analysis tasks, to enhance their expertise. However, systems must also be cognisant about how expertise is gained and designed so that this is not impinged. In this paper, we describe the results of Cognitive Task Analysis interviews with 6 experienced intelligence analysts. We capture themes, in terms of their decision making paths during an analysis task, and highlight how each theme is both influenced by expertise and an influence upon expertise. We also identify important interdependencies between themes. We propose that our findings can be used to help design Human-Centered AI (HCAI) systems for supporting intelligence analysts

    A potato NOA gene increased salinity tolerance in Arabidopsis thaliana

    Get PDF
    The purpose of this study is to produce recombinant StNOA1 in transgenic plants and to test its potential role in plant salt stress responses. The newly cloned StNOA1 gene from Solanum tuberosum L. was inserted into AtnOA1 mutant plant genome by Agrobaterium-mediated floral dip method. Transgene integration was verified by polymerase chain reaction (PCR) in 4 different lines of transgenic Atnoa1. Expression of StNOA1 gene was further analyzed by reverse trancription (RT)-PCR. Physiological analyses indicated that the transgenic line TL9 had higher proline, soluble protein and chlorophyll contents as well as lower content of malondialdehyde (MDA) compared to its receptor, Atnoa1 mutant, under salt stress condition. Root elongation and survival rate in TL9 were significantly higher than those in Atnoa1 seedlings under salt stress. Present study proved that StNOA1 participated in Arabidopsis thaliana salt stress responses and increased its salinity tolerance.Keywords: StNOA1 transformation, Solanum tuberosum, Atnoa1 mutant, salt toleranceAfrican Journal of Biotechnology Vol. 9(36), pp. 5869-5878, 6 September, 201

    Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP

    Get PDF
    BACKGROUND: AtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes. RESULTS: ATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription. CONCLUSIONS: AtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.published_or_final_versio

    An early Cambrian agglutinated tubular lophophorate with brachiopod characters.

    Get PDF
    The morphological disparity of lophotrochozoan phyla makes it difficult to predict the morphology of the last common ancestor. Only fossils of stem groups can help discover the morphological transitions that occurred along the roots of these phyla. Here, we describe a tubular fossil Yuganotheca elegans gen. et sp. nov. from the Cambrian (Stage 3) Chengjiang Lagerstätte (Yunnan, China) that exhibits an unusual combination of phoronid, brachiopod and tommotiid (Cambrian problematica) characters, notably a pair of agglutinated valves, enclosing a horseshoe-shaped lophophore, supported by a lower bipartite tubular attachment structure with a long pedicle with coelomic space. The terminal bulb of the pedicle provided anchorage in soft sediment. The discovery has important implications for the early evolution of lophotrochozoans, suggesting rooting of brachiopods into the sessile lophotrochozoans and the origination of their bivalved bauplan preceding the biomineralization of shell valves in crown brachiopods

    Fate and transport of volatile organic compounds in glacial till and groundwater at an industrial site in Northern Ireland

    Get PDF
    Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45-7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at similar to 4.5-7 m bgl. Highest TCE measurements at 390,000 mu g L-1 for groundwater and at 39,000 mu g kg(-1) at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat < 3.0 m bgl in the ECP. Some indication of natural attenuation as VOCs degradation products vinyl chloride (VC) and dichloromethane (DCM) also occur on the site

    Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals

    Get PDF
    Three eggplant cultivars were inoculated with Verticillium dahliae Kleb. to assess their resistance to Verticillium wilt. Solanum tor was resistant, “Liyuanziqie” was tolerant, and “Xi’anlvqie” susceptible. The disease incidence and disease index of Verticillium wilt and the amount of V. dahliae in rhizospheric soil, variation of microbial composition, the allelopathy of root exudates to mycelium growth of V. dahliae and the chemical substances of root exudates from eggplant cultivars with different resistance to Verticillium wilt were investigated in this experiment. The results showed that the root exudates of resistant type could not only affect the growth and development of V. dahliae, but also influence V. dahliae indirectly through regulating soil microbial community composition. This may be one of the reasons for the increase of disease resistance. However, the susceptible type exhibited an opposite trend. It was inferred that the resistant type contained some particular components, such as  acohd, amide, pyranoid, fluorene, while the susceptible one comprised more types of components, that is, ketone, phenol, ester and phenolic acid.Key words: Allelopathy, allelochemical, root exudates, eggplant, Verticillium dahliae, Verticillium wilt, microbial composition

    Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development

    Get PDF
    Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.postprin

    Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana

    Get PDF
    published_or_final_versio

    AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    Get PDF
    published_or_final_versio
    corecore